Framework: The role of Humans in the Future of Work

Framework: The role of Humans in the Future of Work | #Analytics #Artificialintelligence #RT

  • For the last years in addressing the future of work I have often focused on the human capabilities that will drive value as machines become more capable and the work landscape is transformed.
  • To help define and clarify these capabilities I created a landscape on the role of Humans in the Future of Work, which I first shared publicly in my keynote yesterday.
  • This framework overlaps and builds on my Future of Work Framework, specifically building out the distinctive human capabilities that will be relevant and valued as the work landscape is transformed.
  • I have spoken and written before about the three fundamental human capabilities for the future of work: EXPERTISE, RELATIONSHIPS and CREATIVITY.
  • Recognizing these distinctive human capabilities allows us to design work, organizations and education to use and develop these capabilities to best effect.

For the last years in addressing the future of work I have often focused on the human capabilities that will drive value as machines become more capable and the work landscape is transformed.
Continue reading “Framework: The role of Humans in the Future of Work”

Machine learning technology set to unlock US$17B fintech opportunity: white paper

#machinelearning technology set to unlock US$17B #fintech opportunity
#AI #ML #banking #tech

  • Machine learning technology can be used in automated risk assessment for lending, stock trading analysis, predictive analytics for corporate investing and day-to-day functions like improving customer service and building persuasive pitches.
  • According to a white paper released by Juniper Research released this week, there is one fintech sector that may particularly benefit from the advancement in AI technology.
  • Also Read: Mobile apps overtake mobile web in APAC, with Malaysia leading the way: MFI report

    The UK-based research firm projected that, between 2016 and 2021, revenue growth from unsecured loans, tied directly to machine learning advancements, would jump by 960 per cent during the 5-year-period.

  • For the purpose of the study, Juniper defined AI/Machine Learning as:

    The reason for this revenue jump is the nature of fintech is to traffic in risk assessment, so the Juniper analysis is projecting the financial gains made from lending decisions backed by accurate, high-tech data analytics.

  • Also Read: Apple growth is stagnating in China, its 2nd biggest market: Report

    Finally, the report noted that US investment into AI technology has increased by 600 per cent over the last five years, signalling an expectation that machine learning will become an evermore important part of our day-to-day business lives.

The fintech industry opportunity in Asia is set to directly compete with North America and blow Europe out of the water
Continue reading “Machine learning technology set to unlock US$17B fintech opportunity: white paper”

Google+ using machine learning to display high-resolution images w/ 75% less bandwidth

Google+ using machine learning to display high-resolution images w/ 75% less bandwidth

  • Back in November, Google showed off a machine learning technique that enhances low-res and blurry images.
  • Apps & Updates Google Plus Machine learning
  • A 100kb 1000 x 1500 image is replaced by a 25kb file that ends up having the original resolution after RAISR.
  • Google Wifi Review: A great user-friendly router for your home, even if you buy just one
  • 1 billion images per week have already taken advantage of RAISR, with total user bandwidth reduced by a third.

Back in November, Google showed off a machine learning technique that enhances low-res and blurry images. The RAISR technique is now being used in Google+ to display high-resolution photos while using an impressive 75% less bandwidth.
Continue reading “Google+ using machine learning to display high-resolution images w/ 75% less bandwidth”

Google reveals RAISR: an image enhancement tech which uses machine learning

#google reveals RAISR: an image enhancement tech which uses machine learning

  • Google reveals RAISR: an image enhancement tech which uses machine learning
  • The best way to stay connected to the Android pulse everywhere.
  • Google Research Scientist Peyman Milanfar explained the technology on the Google research blog and how it differs from existing methods image enhancement methods.
  • Google Photos now allows you to create animations offline
  • Scott Adam Gordon is a European correspondent for Android Authority .

Google has shared details on RAISR, its new image enhancement technology which uses machine learning to produce high-quality versions of low-quality images.
Continue reading “Google reveals RAISR: an image enhancement tech which uses machine learning”

Calling All Dancing Queens: ABBA Plans to Reunite — but There’s a Catch

Calling all dancing queens: ABBA plans to reunite — but there’s a catch

  • Reproduction in whole or in part without permission is prohibited.
  • ABBA fans: dust off your platforms and prepare to step into a time machine.
  • In June, all four members sung on stage for the first time in 30 years during a special 50th anniversary party in Stockholm.
  • There are few details about the performance, but the new show aims to blend virtual reality and artificial intelligence in an entirely new way to enable ABBA fans of all ages to interact with the band’s unique disco sound.
  • “We are exploring a new technological world, with virtual reality and artificial intelligence at the forefront, that will allow us to create new forms of entertainment and content we couldn’t have previously imagined.”

The Swedish super-group is returning for an “entertainment experience” that will blend cutting-edge virtual reality and artificial intelligence
Continue reading “Calling All Dancing Queens: ABBA Plans to Reunite — but There’s a Catch”

srez/README.md at master · david-gpu/srez · GitHub

This is CSI-level: facial reconstruction via machine learning DCGA networks
 HT @diogomonica

  • The generator network relies on ResNet modules as we’ve found them to train substantially faster than more old-fashioned architectures.
  • ‘s an random, non cherry-picked, example of what this network can do.
  • The adversarial term of the loss function ensures the generator produces plausible faces, while the L1 term ensures that those faces resemble the low-res input data.
  • In addition to that the loss function of the generator has a term that measures the L1 difference between the 16×16 input and downscaled version of the image produced by the generator.
  • Extract all images to a subfolder named dataset .

srez – Image super-resolution through deep learning
Continue reading “srez/README.md at master · david-gpu/srez · GitHub”

Listing Objects

Get info on how long it took to create Amazon ML objects to estimate future training:

  • The date and time when Amazon ML finished creating this object.
  • To see a list of the last 1,000 objects that you’ve created, in the Amazon ML console, open the Objects dashboard.
  • The object descriptions include the same information for each of the object types that is displayed in the console, including details that are specific to an object type.
  • The columns on the Objects dashboard show the following information about each object.
  • To see more details about an object, including details that are specific to that object type, choose the object’s name or ID.

Read the full article, click here.


@awscloud: “Get info on how long it took to create Amazon ML objects to estimate future training:”


List Amazon ML objects and their details.


Listing Objects