An Overview of Python Deep Learning Frameworks

An Overview of #Python #DeepLearning Frameworks #KDN

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

How to Build a Recurrent Neural Network in TensorFlow

How to Build a Recurrent #NeuralNetwork in TensorFlow

  • The input to the RNN at every time-step is the current value as well as a state vector which represent what the network has “seen” at time-steps before.
  • The weights and biases of the network are declared as TensorFlow variables, which makes them persistent across runs and enables them to be updated incrementally for each batch.
  • Now it’s time to build the part of the graph that resembles the actual RNN computation, first we want to split the batch data into adjacent time-steps.
  • This is the final part of the graph, a fully connected softmax layer from the state to the output that will make the classes one-hot encoded, and then calculating the loss of the batch.
  • It will plot the loss over the time, show training input, training output and the current predictions by the network on different sample series in a training batch.


This is a no-nonsense overview of implementing a recurrent neural network (RNN) in TensorFlow. Both theory and practice are covered concisely, and the end result is running TensorFlow RNN code.

Continue reading “How to Build a Recurrent Neural Network in TensorFlow”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of Python Deep Learning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

Year in Review: Deep Learning Breakthoughts 2016

Year in Review: #DeepLearning Breakthoughts 2016 #abdsc

  • You need to be a member of Data Science Central to add comments!
  • 2016 has been a breakthrough year for deep learning, especially for Google and DeepMind.
  • Today we are featuring the year’s most interesting breakthroughs in deep learning that we have been fawning over at Grakn Labs.
  • (For those of you who are interested in a crash course in deep learning, ‘s a great video by Andrew Ng at Stanford.)
  • Although not the most sophisticated use of deep learning that we’ve seen, we must hand it to him for originality and capturing the zeitgeist.

Today we are featuring the year’s most interesting breakthroughs in deep learning that we have been fawning over at Grakn Labs. (For those of you who are inter…
Continue reading “Year in Review: Deep Learning Breakthoughts 2016”