Deep Learning Cheat Sheet (using Python Libraries)

#DeepLearning Cheat Sheet (using Python Libraries) #abdsc

  • This cheat sheet was produced by DataCamp, and it is based on the Keras library.
  • Keras is an easy-to-use and powerful library for Theano and TensorFlow that provides a high-level neural networks API to develop and evaluate deep learning models.
  • For other cheat sheets covering all data science topics, click here.

This cheat sheet was produced by DataCamp, and it is based on the Keras library..Keras is an easy-to-use and powerful library for Theano and TensorFlow that pr…
Continue reading “Deep Learning Cheat Sheet (using Python Libraries)”

An Overview of Python Deep Learning Frameworks

An Overview of #Python #DeepLearning Frameworks #KDN

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

Deep Learning Cheat Sheet (using Python Libraries)

#DeepLearning Cheat Sheet (using #Python Libraries) | @DataScienceCtrl  #Keras #TensorFlow

  • This cheat sheet was produced by DataCamp, and it is based on the Keras library.
  • Keras is an easy-to-use and powerful library for Theano and TensorFlow that provides a high-level neural networks API to develop and evaluate deep learning models.
  • For other cheat sheets covering all data science topics, click here.

This cheat sheet was produced by DataCamp, and it is based on the Keras library..Keras is an easy-to-use and powerful library for Theano and TensorFlow that pr…
Continue reading “Deep Learning Cheat Sheet (using Python Libraries)”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of Python Deep Learning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

List of Free Must-Read Books for Machine Learning

List of Free Must-Read Books for #MachineLearning

  • In this article, we have listed some of the best free machine learning books that you should consider going through (no order in particular).
  • This book holds the prologue to statistical learning methods along with a number of R labs included.
  • The online version of the book is available now for free.
  • For the mathematics- savvy people, this is one of the most recommended books for understanding the magic behind Machine Learning.
  • This book has a lot to offer to the Engineering and Computer Science students studying Machine Learning and Artificial Intelligence.

In this article, we have listed some of the best free machine learning books that you should consider going through (no order in particular).
Continue reading “List of Free Must-Read Books for Machine Learning”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

An Overview of Python Deep Learning Frameworks

#ICYMI An Overview of #Python #DeepLearning Frameworks

  • I recently stumbled across an old Data Science Stack Exchange answer of mine on the topic of the “Best Python library for neural networks”, and it struck me how much the Python deep learning ecosystem has evolved over the course of the past 2.5 years.
  • Since Theano aims first and foremost to be a library for symbolic mathematics, Lasagne offers abstractions on top of Theano that make it more suitable for deep learning.
  • Similar to Lasagne, Blocks is a shot at adding a layer of abstraction on top of Theano to facilitate cleaner, simpler, more standardized definitions of deep learning models than writing raw Theano.
  • More recently, the TensorFlow team decided to incorporate support for Keras, the next deep learning library on our list.
  • It’s a loose port of Lua’s Torch library to Python, and is notable because it’s backed by the Facebook Artificial Intelligence Research team (FAIR), and because it’s designed to handle dynamic computation graphs — a feature absent from the likes of Theano, TensorFlow, and derivatives.


Read this concise overview of leading Python deep learning frameworks, including Theano, Lasagne, Blocks, TensorFlow, Keras, MXNet, and PyTorch.

Continue reading “An Overview of Python Deep Learning Frameworks”

GitHub

Deep #ReinforcementLearning for #Keras: state-of-the art #DeepLearning in #Python

  • In a nutshell: keras-rl makes it really easy to run state-of-the-art deep reinforcement learning algorithms, uses Keras and Theano and TensorFlow and was built with OpenAI Gym in mind.
  • keras-rl implements some state-of-the art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras .
  • You can extend keras-rl according to your own needs.
  • The repo provides some weights that were obtained by running (at least some) of the examples that are included in keras-rl .
  • Keras-rl works with OpenAI Gym out of the box.

Read the full article, click here.


@kdnuggets: “Deep #ReinforcementLearning for #Keras: state-of-the art #DeepLearning in #Python”


keras-rl – Deep Reinforcement Learning for Keras.


GitHub